Longitudinal Research on Resilience

Fons J. R. van de Vijver

www.fonsvandevijver.org
Theme

• What can we learn about resilience by using longitudinal designs?
• Focus on recent developments in quantitative research methods to enhance the quality of our studies
 – No mixed methods studies discussed
• Challenge
 – Resilience is an interactive concept
 – Resilience influenced by
 • Personal resources
 • Contextual resources
 • Contextual challenges
 •
Relevance of Longitudinal Designs in Resilience Studies

- These designs can address many questions:
 - Resilience is a dynamic concept; longitudinal designs do justice to this idea
 - How does resilience develop over time?
 - Are there gender/age/ethnic differences in these patterns?
 - How important are personal and contextual (neighborhood, family) resources for the development of resilience?
 - How effective is a resilience intervention?
More generally, longitudinal designs can address two types of questions:

1. **“Level questions”**: change trajectories, change in mean scores,…

2. **“Structure questions”**: how is change related to personal and contextual conditions?
Structure Presentation

1. Methodological perspectives on change
 – Classical dilemmas
 – Modern solutions

2. Design and analysis of some recent longitudinal studies
 – Focus in presentation on examples
 – New perspective on change

3. Conclusions
Classical Dilemmas

• 1. Can change scores be used for analysis?
 – Change scores can be unreliable

• 2. What is responsible for changes over time?
 – Concept stays the same over time
 • Changes in height, weight
 – Concept changes over time
 • Changes in intelligence in first 10 years

• 3. Is dropout selective/random in longitudinal designs?
 – Do most/least resilient children drop out?
A Bit of History

• Focus was on repeated measures of the same (in)dependent variables

• Assessment of change often considered the Achilles heel of Classical Test Theory (Lord & Novick, 1968)

• Standard statistical procedures did not work well
 – Differences could be unreliable
 – Repeated measures ANOVA could not deal with missing values
 – Models often started from the assumption that growth follows an identical pattern for all participants
Unreliability of Difference Scores: A Paradox for Measurement of Change

John E. Overall and J. Arthur Woodward
University of Texas Medical Branch, Galveston

HOW WE SHOULD MEASURE "CHANGE"—OR SHOULD WE?!?

LEE J. CRONBACH² AND LITA FURBY³
Stanford University

Procedures previously recommended by various authors for the estimation of "change" scores, "residual" or "basefree" measures of change, and other kinds of difference scores are examined. A procedure proposed by Lord is extended to obtain more precise estimates, and an alternative to the Tucker-Damarin-Messick procedure is offered. A consideration of the purposes for which change measures have been sought in the past leads to a series of recommended procedures which solve research and personnel-decision problems without estimation of change scores for individuals.
Modern solutions

• Rigidity of conventional approach did not work
 – Change assessment is vital in many areas of psychology, sociology, community development, ...

• In the last 30 years there has been a spectacular increase in available models and procedures for longitudinal data analysis
 – Now available for all measurement levels
• Major advances in missing value analysis and imputation (source: Wikipedia)
 – MCAR
 • Values in a data set are missing completely at random (MCAR) if the events that lead to any particular data-item being missing are independent both of observable variables and of unobservable parameters of interest, and occur entirely at random.
 – MAR
 • occurs when the missingness is related to a particular variable, but it is not related to the value of the variable that has missing data.
 – MNAR
 • data missing for a specific reason (e.g., deliberate item skipping)
• Statistical tests of MCAR available
• Dealing with missingness under MCAR and MAR
 – Imputation of missing data that are MCAR or MAR can be done
 – Procedures in Structural Equation Modeling packages available for working with missing data under MCAR and MAR
Example Longitudinal Resilience Study

- Kauai Longitudinal Study (Werner & Smith, 2001)
 - Longitudinal study from infancy to adulthood
 - identify key risk and protective factors that influence resilience outcomes
 - Outcomes were influenced by
 - (1) **individual characteristics**, such as self-esteem
 - (2) **characteristics of families**, such as maternal caregiving
 - (3) **larger social context**, especially having supportive adult role models
 - Conclusion:
 - Longitudinal study of resilience should include change at multiple levels
Part 1
Design and Analysis of Some Recent Longitudinal Studies
Size at birth and resilience to effects of poor living conditions in adult life: longitudinal study

D J P Barker, T Forsén, A Uutela, C Osmond, J G Eriksson

BMJ VOLUME 323 1 DECEMBER 2001 bmj.com
• Topic: Size at birth and resilience to effects of poor living conditions in adult life in Finland
• Sample: Participants 3676 men
 – born during 1934-1944
 – Attended child welfare clinics in Helsinki
• Setting: Helsinki, Finland
• Predictors
 – Income
 – Education
 – SES in infancy and adult life
• Outcome
 – Hospital admission for or death from coronary heart disease between 1971 and 1997
• Analyses
 – Ratio of hazard (related to probability of coronary heart disease) to non-hazard is analyzed
 – Hazard ratios predicted by background variables

• Results
 – Hazard increases as a function of each independent variable in a predictable manner
• Methodological notes
 – Different variables measured at different time points; change does not need to be modeled
 – Regression analysis (modeling hazard ratios) to predict outcomes
 – Not all members of original cohort could be followed
 • Selectivity of dropout?
 – Very often a problem; infrequently addressed
Second Example

RAND D. CONGER AND KATHERINE J. CONGER
University of California—Davis

Resilience in Midwestern Families: Selected Findings from the First Decade of a Prospective, Longitudinal Study

Journal of Marriage and Family 64 (May 2002): 361-373
• Panel study 1989-1993 (yearly)
• Setting: rural Iowa; severe economic downturn in the 1980s
Figure 1. The Family Stress Model of Economic Hardship Incorporating Resilience Promoting Social and Personal Resources

Note: Dashed arrows from resources indicate statistical main or compensatory effects and completed arrows from resources indicate statistical interaction, moderating, or buffering effects.
• Focus here on parental sense of mastery/control as a resource
Role of Parenting

1. High nurturant - involved parenting: Mothers above, Fathers below

 - Older Sibling Alcohol Use-Abuse to Younger Sibling Alcohol Use-Abuse
 - .23 (n.s.)
 - .13 (n.s.)

2. Low nurturant - involved parenting: Mothers above, Fathers below

 - Older Sibling Alcohol Use-Abuse to Younger Sibling Alcohol Use-Abuse
 - .40*
 - .43*
• Methodological notes
 – Analysis of change scores in path analysis
 • Can be problematic for methodological reasons
 – Type of parenting as moderator
 • Test of similarity of regression coefficients
 • Multigroup analysis in Structural Equation Modeling
Looking for resilience: Understanding the longitudinal trajectories of responses to stress

Fran H. Norrisa,\ast, Melissa Tracyb, Sandro Galeab

aDartmouth Medical School, Psychiatry/NCPTSD, VA Medical Center, 215 North Main Street, White River Junction, VT 05009, USA
bUniversity of Michigan, MI, USA
• Time trajectory of coping with stress in Mexico (two sites, after floods) and in New York (after 9/11)
• Assessment: Mexico (n = 561)
• PTSD was measured by using a modified version of Module K of Version 2.1 of the Composite International Diagnostic Interview (CIDI)
• 2001 terrorist attacks in New York (n = 1267)
• National Women’s Study (NWS) posttraumatic stress module questions to assess PTSD

• Instruments in both studies ask about symptom prevalence
Hypothesized Coping Patterns

Fig. 1. Hypothesized trajectories of the course of stress responses.
• Analyses:
 – main interest in symptom trajectories
• “Manual” split in different subgroups
 – Trajectories per subgroup
• Zero inflated regression per subgroup (zero inflated to account for many people without symptoms)
Fig. 2. Trajectories of PTSD symptoms among residents of Villahermosa and Teziutlán in Mexico (n = 561) after the 1999 flood. Numbers in parentheses refer to the wave of assessment.
<table>
<thead>
<tr>
<th>Group</th>
<th>Symptom trajectory<sup>a</sup></th>
<th>Parameter</th>
<th>Estimate (SE)<sup>b</sup></th>
<th>p-Value</th>
<th>Prevalence</th>
<th>Mean posterior probability (SD)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stable, mild</td>
<td>Intercept</td>
<td>2.308 (0.161)</td>
<td><0.001</td>
<td>34.5%</td>
<td>0.926 (0.133)</td>
</tr>
<tr>
<td>2</td>
<td>Stable, moderate</td>
<td>Intercept</td>
<td>6.881 (0.699)</td>
<td><0.001</td>
<td>12.0%</td>
<td>0.702 (0.163)</td>
</tr>
<tr>
<td>3</td>
<td>Decreasing, severe (1) to moderate (2)</td>
<td>Intercept</td>
<td>17.686 (0.991)</td>
<td><0.001</td>
<td>32.0%</td>
<td>0.821 (0.180)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear</td>
<td>-1.453 (0.130)</td>
<td><0.001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quadratic</td>
<td>0.036 (0.004)</td>
<td><0.001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Decreasing, severe (1) to moderate (4)</td>
<td>Intercept</td>
<td>15.377 (1.355)</td>
<td><0.001</td>
<td>11.4%</td>
<td>0.818 (0.146)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear</td>
<td>-0.343 (0.079)</td>
<td><0.001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>Stable, severe</td>
<td>Intercept</td>
<td>12.343 (0.393)</td>
<td><0.001</td>
<td>10.0%</td>
<td>0.827 (0.161)</td>
</tr>
</tbody>
</table>

^a Mild: 0–3 symptoms; moderate: 4–8 symptoms; severe: ≥9 symptoms; numbers in parentheses indicate survey wave.

^b Standard error.

^c Standard deviation.

Table 1: Parameter estimates, prevalence, and mean posterior probability of assignment for each PTSD symptoms trajectory group among residents of Villahermosa and Teziutlán in Mexico (n = 561) after the 1999 flood.
Fig. 3. Trajectories of PTSD symptoms among residents of the New York City metropolitan area (n = 1,267) after the September 11, 2001 attacks. Numbers in parentheses refer to the wave of assessment.
<table>
<thead>
<tr>
<th>Group</th>
<th>Symptom trajectory<sup>a</sup></th>
<th>Parameter</th>
<th>Estimate (SE)<sup>b</sup></th>
<th>p-Value</th>
<th>Prevalence</th>
<th>Mean posterior probability (SD)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stable, mild</td>
<td>Intercept</td>
<td>-1.847 (0.174)</td>
<td><0.001</td>
<td>40.1%</td>
<td>0.921 (0.135)</td>
</tr>
<tr>
<td>2</td>
<td>Increasing, mild (1) to mild (2)</td>
<td>Intercept</td>
<td>-7.617 (3.239)</td>
<td>0.019</td>
<td>13.3%</td>
<td>0.806 (0.179)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear</td>
<td>1.08 (0.433)</td>
<td>0.011</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quadratic</td>
<td>-0.044 (0.016)</td>
<td>0.006</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cubic</td>
<td>0.001 (0.0002)</td>
<td>0.003</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Decreasing, moderate (1) to mild (2)</td>
<td>Intercept</td>
<td>3.210 (0.573)</td>
<td><0.001</td>
<td>10.1%</td>
<td>0.834 (0.175)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear</td>
<td>-0.291 (0.066)</td>
<td><0.001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quadratic</td>
<td>0.004 (0.001)</td>
<td><0.001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Increasing, mild (1) to moderate (4)</td>
<td>Intercept</td>
<td>2.360 (0.812)</td>
<td>0.004</td>
<td>14.3%</td>
<td>0.829 (0.175)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear</td>
<td>-0.335 (0.133)</td>
<td>0.011</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quadratic</td>
<td>0.015 (0.006)</td>
<td>0.015</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cubic</td>
<td>-0.0002 (0.00008)</td>
<td>0.029</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>Increasing, moderate (1) to moderate (4)</td>
<td>Intercept</td>
<td>0.320 (0.504)</td>
<td>0.525</td>
<td>9.9%</td>
<td>0.878 (0.139)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear</td>
<td>0.195 (0.056)</td>
<td>0.001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quadratic</td>
<td>-0.007 (0.002)</td>
<td>0.001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cubic</td>
<td>0.000009 (0.00003)</td>
<td>0.001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>Decreasing, moderate (1) to mild (4)</td>
<td>Intercept</td>
<td>0.885 (0.305)</td>
<td>0.004</td>
<td>9.3%</td>
<td>0.862 (0.152)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear</td>
<td>0.079 (0.025)</td>
<td>0.001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quadratic</td>
<td>-0.002 (0.001)</td>
<td><0.001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>Stable, severe</td>
<td>Intercept</td>
<td>2.049 (0.215)</td>
<td><0.001</td>
<td>3.1%</td>
<td>0.937 (0.104)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear</td>
<td>0.039 (0.015)</td>
<td>0.008</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quadratic</td>
<td>-0.001 (0.0002)</td>
<td>0.002</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

^a Mild: 0–3 symptoms; moderate: 4–8 symptoms; severe: ≥ 9 symptoms; numbers in parentheses indicate survey wave.

^b Standard error.

^c Standard deviation.
• Methodological notes
 – Unclear why latent class analysis was not applied; now possible to combine latent class and regression analysis
Family Adversity, Positive Peer Relationships, and Children’s Externalizing Behavior: A Longitudinal Perspective on Risk and Resilience

Michael M. Criss, Gregory S. Pettit, John E. Bates, Kenneth A. Dodge, and Amie L. Lapp
• Site: Families with children entering kindergarten were recruited from two cohorts in 1987 and 1988 from three sites: Knoxville and Nashville, Tennessee and Bloomington, Indiana
• Data collected in two consecutive years
• Risk factors were assessed in interviews
 – three measures of family adversity: ecological disadvantage (e.g., low SES), violent marital conflict, and harsh discipline
• Moderators:
 – Peer ratings of acceptance (liked and disliked peers)
 – Ethnicity
 – Gender
 – Temperament (rating by mother)

• Outcome measured after one year
 – child's teacher completed the 112-item Child Behavior Checklist-Teacher Report Form (CBCL-TRF; Achenbach, 1991) → externalizing behavior
• Analysis
 – Stepwise regression, with moderators entered as interactions
 – E.g., can positive peer relations help to overcome ecological hardship?
 – Tw-step regression
 • Step 1: positive peer relations and ecological hardship
 • Step 2: interaction (multiplication of centered independent variables) added
 – Moderation if interaction is significant
Table 3 Regressions Examining Positive Peer Relationships as Moderators in the Link between Family Adversity and Children's Externalizing Behavior

<table>
<thead>
<tr>
<th>Step</th>
<th>Predictor</th>
<th>Peer Acceptance</th>
<th></th>
<th></th>
<th>Friendships</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Standardized β</td>
<td>ΔR²</td>
<td>Standardized β</td>
<td>ΔR²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Ecological Disadvantage</td>
<td>.22***</td>
<td>.22***</td>
<td>.28***</td>
<td>.13***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive Peer Relationship</td>
<td>−.37***</td>
<td></td>
<td></td>
<td>−.19***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ecological Disadvantage × Peer Relationship</td>
<td>−.12**</td>
<td>.01**</td>
<td></td>
<td>.05</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Violent Marital Conflict</td>
<td>.14**</td>
<td>.16***</td>
<td>.17***</td>
<td>.07***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive Peer Relationship</td>
<td>−.36***</td>
<td></td>
<td></td>
<td>−.19***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Marital Conflict × Peer Relationship</td>
<td>−.17***</td>
<td>.02***</td>
<td></td>
<td>−.05</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Harsh Discipline</td>
<td>.09*</td>
<td>.18***</td>
<td>.17***</td>
<td>.07***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive Peer Relationship</td>
<td>−.40***</td>
<td></td>
<td></td>
<td>−.21***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Harsh Discipline × Peer Relationship</td>
<td>−.08*</td>
<td>.01*</td>
<td></td>
<td>−.09*</td>
<td>.01*</td>
<td></td>
</tr>
</tbody>
</table>

Note: Ns = 449 to 517.

*p < .05; ** p < .01; *** p < .001.
Table 4 Regression Slopes Depicting the Association between Family Adversity and Children’s Externalizing Behavior at Different Levels of Positive Peer Relationship

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Predictor</th>
<th>Levels of Positive Peer Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecological disadv.</td>
<td>Peer acceptance</td>
<td>.92</td>
</tr>
<tr>
<td>Violent marital conflict</td>
<td>Peer acceptance</td>
<td>2.27***</td>
</tr>
<tr>
<td>Harsh discipline</td>
<td>Peer acceptance</td>
<td>3.62***</td>
</tr>
<tr>
<td>Harsh discipline</td>
<td>Peer acceptance</td>
<td>−1.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.03***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.10**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.97***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.94***</td>
</tr>
</tbody>
</table>

* *p < .05; ** *p < .01; *** *p < .001.
• Methodological notes
 – Focus on individual-level moderators
 – Stepwise regression used to examine the role of moderators
 • SPSS + specific routines available to estimate significance
 – Alternative
 • Structural equation modeling
 – Split up in groups with different levels of moderator and test invariance of model
 – Suitable in particular for nominal moderators such as gender and ethnicity
 – Caveat
 • Estimate proportion of variance accounted for by moderator (significance may not imply salience)
New Perspective on Change
Latent Growth Analysis

(Hox, 2000)
Example

• Clark, Diener et al. (2008), *The Economic Journal*
• German Panel Data (1984-2003), N = 16,795
• Life satisfaction after
 – unemployment
 – layoff
 – marriage
 – divorce
 – death of spouse
 – birth of child
Marriage

No. of years before and after the event
Psychopathology and Resilience Following Traumatic Injury:
A Latent Growth Mixture Model Analysis

Terri A. deRoon-Cassini
Medical College of Wisconsin

Anthony D. Mancini
Pace University

Mark D. Rusch
Medical College of Wisconsin

George A. Bonanno
Columbia University
• A longitudinal study of 330 injured trauma survivors (mostly car accidents)
• Assessed during hospitalization, and at 1, 3, and 6 months follow-up.
• Instruments
 – Acute Stress Disorder Interview (ASD-I)
 – Post-Traumatic Stress Diagnostic Scale (PDS)
 – Center for Epidemiologic Studies Depression Scale (CESDS).
Identified four latent classes
 – chronic distress
 – delayed distress
 – recovered
 – Resilience (low stress)
Figure 1. Four-class solution for PTSD symptoms (includes covariates).
Figure 2. Four-class solution for depression symptoms (includes covariates).
Table 6

Covariates Prediction of Trajectory Class Membership: Depression

<table>
<thead>
<tr>
<th>Variable</th>
<th>Delayed</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
<td>OR</td>
<td>95% CI</td>
<td>OR</td>
</tr>
<tr>
<td>Human intention</td>
<td>2.06†</td>
<td>.40–12.56</td>
<td>5.59</td>
<td>.59–53.01</td>
<td>6.42*</td>
</tr>
<tr>
<td>Education</td>
<td>.83†</td>
<td>.66–1.03</td>
<td>.81</td>
<td>.56–1.17</td>
<td>.80†</td>
</tr>
<tr>
<td>Self-efficacy T1</td>
<td>1.04</td>
<td>.74–1.45</td>
<td>.68</td>
<td>.40–1.14</td>
<td>.62*</td>
</tr>
<tr>
<td>Anger T1</td>
<td>1.16*</td>
<td>1.03–1.32</td>
<td>1.15†</td>
<td>.98–1.35</td>
<td>1.22*</td>
</tr>
</tbody>
</table>

Note. Low symptom class served as the referent. OR = odds ratio; CI = confidence interval; T1 = baseline.

a 1 = human intention; 0 = accident.

† = $p < .10$. * = $p < .05$.
• Study combines analysis of
 – Mean changes across time
 – Latent classes
 – Predictors of change
Part 3
Conclusions
• Many procedures developed in the last decades, both level- and structure-oriented
• Procedures often do not use change scores but model change as a function of original scores
• What is the best procedure will vary across studies
Future

- No models yet of systemic change at multiple levels (interrelated changes in child, family, community)
- Change from relatively few time points to multiple time points (collecting “big data” using modern technology)
 - Following an intervention program using Facebook, Twitter, local media, dedicated apps, ...